Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Chinese Journal of Medical Genetics ; (6): 39-42, 2022.
Article in Chinese | WPRIM | ID: wpr-928357

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a neonate affected with Glutaric aciduria type I (GA-I).@*METHODS@#Targeted capture and high-throughput sequencing was carried out for the proband and her parents. Candidate variants were verified by Sanger sequencing.@*RESULTS@#The proband was found to harbor compound heterozygous variants of the GCDH gene, namely c.523G>A and c.1190T>C, which was derived from her father and mother, respectively.@*CONCLUSION@#The compound heterozygous variants of the GCDH gene probably underlay the GA-I in the patient.


Subject(s)
Child , Female , Humans , Infant, Newborn , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Glutaryl-CoA Dehydrogenase/genetics , High-Throughput Nucleotide Sequencing , Mutation
2.
Chinese Journal of Medical Genetics ; (6): 882-885, 2019.
Article in Chinese | WPRIM | ID: wpr-776784

ABSTRACT

OBJECTIVE@#To screen for potential variants of GCDH gene in 3 patients clinically diagnosed as glutaric aciduria type Ⅰ.@*METHODS@#GCDH gene variants was detected by Sanger sequencing among the three children and their family members.@*RESULTS@#Sanger sequencing showed that patient 1 carried compound heterozygosity variants of c.532G>A (p.Gly178Arg) and c.655G>A (p.Ala219Thr) of the GCDH gene, while his father and mother respectively carried heterozygous c.532G>A(p.Gly178Arg) and c.655G>A (p.Ala219Thr) variants. Patient 2 carried c.532G>A (p.Gly178Arg) and a novel c.1060G>T (p.Gly354Cys) compound heterozygous variant, while his father and mother respectively carried heterozygous c.532G>A (p.Gly178Arg) and c.1060G>T (p.Gly354Cys) variant. Patient 3 carried homozygous c.532G>A (p.Gly178Arg) variant of the GCDH gene, for which both of his parents were heterozygous carriers.@*CONCLUSION@#The GCDH gene variant probably underlie the glutaric aciduria type Ⅰ among the 3 patients. Identifcation of the novel variant has enriched the spectrum of GCDH gene variants.


Subject(s)
Female , Humans , Male , Amino Acid Metabolism, Inborn Errors , Genetics , Brain Diseases, Metabolic , Genetics , Glutaryl-CoA Dehydrogenase , Genetics , Heterozygote
3.
Chinese Journal of Medical Genetics ; (6): 602-605, 2019.
Article in Chinese | WPRIM | ID: wpr-771958

ABSTRACT

OBJECTIVE@#To review the clinical features of a male twin affected with glutaric academia type I (GA-I) and analyze the variations of glutaryl-CoA dehydrogenase (GCDH) gene.@*METHODS@#Clinical data of the pair of twins and their parents were collected. Genomic DNA was extracted from peripheral blood samples, and variants of GCDH genes were detected by capture sequencing using a customized panel. Variants of the twins and their parents were verified by Sanger sequencing.@*RESULTS@#The level of glutaric acyl carnitine (C5DC + C6OH) was 3.26 μmol/L in the male twin. The relative level of glutaric acid in urine was 547.51 by gas chromatography mass spectrometry analysis. Cerebral ultrasonography showed that the patient had subependymal hemorrhage, but no serious clinical manifestation was noted. After treating with special formula milk powder and L-carnitine, the boy showed good growth and development. Two heterozygous variants of the GCDH gene were detected in the patient, among which c.416C>G was suspected to be pathogenic, while c.109_110delCA was unreported. The variants were respectively inherited from his parents. The twin girl only carried the c.416C>G variant.@*CONCLUSION@#GA-I can be diagnosed by mass spectrometry, urine gas chromatographic mass spectrometry, imaging as well as genetic diagnosis. Early diagnosis and intervention is important.


Subject(s)
Female , Humans , Male , Amino Acid Metabolism, Inborn Errors , Genetics , Brain Diseases, Metabolic , Genetics , Glutaryl-CoA Dehydrogenase , Genetics , Mutation , Phenotype
4.
Chinese Journal of Medical Genetics ; (6): 796-799, 2018.
Article in Chinese | WPRIM | ID: wpr-775835

ABSTRACT

OBJECTIVE@#To detect potential variation in glutaryl-CoA dehydrogenase (GCDH) gene among three Chinese families affected with glutaric acidemia type Ⅰ(GA-1) and correlate the genotypes with phenotypes.@*METHODS@#Genomic DNA was extracted from peripheral blood samples derived from three patients with GA-1 and their family members. The coding regions of the GCDH gene were amplified with PCR and subjected to Sanger sequencing.@*RESULTS@#The clinical manifestation of the patients varied from macrocephaly to severe encephalopathy, with notable phenotypic difference between siblings carrying the same variation. In pedigrees 1 and 2, the probands have carried compound heterozygous variations c.1133C>T(p.Ala378Val) and c.1244-2A>C, which were derived their fathers and mothers, respectively. In pedigree 3, the proband has carried compound heterozygous variation c.339delT (p.Tyr113) and c.406G>T (p.Gly136Cys). Among these, variations c.339delT and c.1133C>T were verified as novel by retrieval of dsSNP, HGMD and 1000 genome database. Bioinformatic analysis suggested that above variations can affect protein function and are probably pathogenic.@*CONCLUSION@#Above discovery has expanded the mutation spectrum of the GCDH gene. No correlation was found between the clinical phenotype and genotype of GA-1 patients.


Subject(s)
Humans , Amino Acid Metabolism, Inborn Errors , Diagnosis , Genetics , Brain Diseases, Metabolic , Diagnosis , Genetics , China , DNA Mutational Analysis , Glutaryl-CoA Dehydrogenase , Genetics , Mutation
5.
Chinese Journal of Contemporary Pediatrics ; (12): 1014-1019, 2017.
Article in Chinese | WPRIM | ID: wpr-297164

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the effect of glutaryl-CoA dehydrogenase (GCDH) gene silencing and accumulation of lysine metabolites on the viability of hepatocytes.</p><p><b>METHODS</b>BRL cells were divided into normal control group, negative control group, and GCDH silencing group. The shRNA lentiviral vector for silencing GCDH gene was constructed, and the BRL hepatocytes in the GCDH silencing group and the negative control group were infected with this lentivirus and negative control virus respectively, and then cultured in a medium containing 5 mmol/L lysine. Immunofluorescence assay was used to measure the infection efficiency of lentivirus. Western blot was used to measure the expression of GCDH protein. MTT assay was used to evaluate cell viability. Hoechest33342 staining was used to measure cell apoptosis. Western blot was used to measure the expression of Caspase-3, an index of cell apoptosis.</p><p><b>RESULTS</b>The lentivirus constructed effectively silenced the GCDH gene in hepatocytes (P<0.01). MTT assay and Hoechest 33342 staining showed no significant differences in cell viability and apoptosis between groups (P>0.05). There was also no significant difference in the expression of Caspase-3 protein between groups (P>0.05).</p><p><b>CONCLUSIONS</b>GCDH gene silencing and accumulation of lysine metabolites may not cause marked hepatocyte injury.</p>


Subject(s)
Animals , Rats , Amino Acid Metabolism, Inborn Errors , Pathology , Therapeutics , Apoptosis , Brain Diseases, Metabolic , Pathology , Therapeutics , Caspase 3 , Metabolism , Cell Survival , Cells, Cultured , Fluorescent Antibody Technique , Gene Silencing , Glutaryl-CoA Dehydrogenase , Genetics , Hepatocytes , Pathology , Lysine , Metabolism
6.
Chinese Journal of Contemporary Pediatrics ; (12): 426-430, 2016.
Article in Chinese | WPRIM | ID: wpr-261215

ABSTRACT

A one-year-old girl visited the hospital due to limb torsion and developmental regression for one month after hand, foot and mouth disease. At the age of 11 months, she visited a local hospital due to fever for 5 days and skin rash with frequent convulsions for 2 days and was diagnosed with severe hand, foot and mouth disease, viral encephalitis, and status epilepticus. Brain MRI revealed symmetric abnormal signals in the bilateral basal ganglia, bilateral thalamus, cerebral peduncle, bilateral cortex, and hippocampus. She was given immunoglobulin, antiviral drugs, and anticonvulsant drugs for 2 weeks, and the effect was poor. Blood and urine screening for inherited metabolic diseases were performed to clarify the etiology. The analysis of urine organic acids showed significant increases in glutaric acid and 3-hydroxyglutaric acid, which suggested glutaric aciduria type 1, but her blood glutarylcarnitine was normal, and free carnitine significantly decreased. After the treatment with low-lysine diets, L-carnitine, and baclofen for 1 month, the patient showed a significant improvement in symptoms. Hand, foot and mouth disease is a common viral infectious disease in children, and children with underlying diseases such as inherited metabolic diseases and immunodeficiency may experience serious complications. For children with hand, foot and mouth disease and unexplained encephalopathy, inherited metabolic diseases should be considered.


Subject(s)
Female , Humans , Infant , Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Developmental Disabilities , Glutaryl-CoA Dehydrogenase , Hand, Foot and Mouth Disease , Torsion Abnormality
7.
Chinese Journal of Contemporary Pediatrics ; (12): 460-465, 2016.
Article in Chinese | WPRIM | ID: wpr-261209

ABSTRACT

Glutaric aciduria type 1 is a rare autosomal recessive disorder. GCDH gene mutations cause glutaryl-CoA dehydrogenase deficiency and accumulation of glutaric acid and 3-hydroxyglutaric acid, resulting in damage of striatum and other brain nucleus and neurodegeneration. Patients with glutaric aciduria type 1 present with complex heterogeneous phenotypes and genotypes. The symptoms are extremely variable. The ages of the clinical onset of the patients range from the fetus period to adulthood. The patients with mild glutaric aciduria type 1 are almost asymptomatic before onset, however, severe glutaric aciduria type 1 may cause death or disability due to acute encephalopathy. Acute metabolic crisis in patients with underlying glutaric aciduria type 1 is often triggered by febrile illnesses, trauma, hunger, high-protein foods and vaccination during a vulnerable period of brain development in infancy or early childhood. The early-onset patients usually have a poor prognosis. Urinary organic acids analysis, blood acylcarnitines analysis and GCDH study are important for the diagnosis of this disorder. Neonatal screening is essential for the early diagnosis and the improvement of prognosis.


Subject(s)
Humans , Infant, Newborn , Amino Acid Metabolism, Inborn Errors , Diagnosis , Genetics , Therapeutics , Brain Diseases, Metabolic , Diagnosis , Genetics , Therapeutics , Genotype , Glutaryl-CoA Dehydrogenase , Genetics , Neonatal Screening , Phenotype , Prenatal Diagnosis , Prognosis
9.
Anaesthesia, Pain and Intensive Care. 2015; 19 (2): 173-180
in English | IMEMR | ID: emr-166452

ABSTRACT

Glutaric aciduria type-1 [GA-1] is an autosomal recessive metabolic disorder due to the deficiency of the enzyme glutaryl-CoA dehydrogenase. The enzymatic defect leads to secondary damage to the central nervous system due to the accumulation of glutaric acid. Progressive neurologic effects with spasticity and orthopedic deformities necessitate frequent surgical and anesthetic care. We present a 13-year-old girl with glutaric academia type-1 who required anesthetic care for posterior spinal fusion. Previous reports of anesthetic care for these patients are reviewed, the end-organ involvement discussed, and options for anesthetic care presented


Subject(s)
Female , Humans , Adolescent , Brain Diseases, Metabolic , Glutaryl-CoA Dehydrogenase/deficiency , Perioperative Care
10.
Chinese Journal of Medical Genetics ; (6): 187-191, 2015.
Article in Chinese | WPRIM | ID: wpr-239508

ABSTRACT

<p><b>OBJECTIVE</b>To report on clinical features of four patients with glutaric academia type Ⅰ (GA-1) and mutations identified in the glutaryl-CoA dehydrogenase (GCDH) gene.</p><p><b>METHODS</b>All of the patients underwent magnetic resonance imaging (MRI) analysis. Blood acylcarnitine and urine organic acid were analyzed with tandem mass spectrometry and gas chromatographic mass spectrometry. Genomic DNA was extracted from peripheral blood samples. The 11 exons and flanking sequences of the GCDH gene were amplified with PCR and subjected to direct DNA sequencing.</p><p><b>RESULTS</b>Mutations of the GCDH gene were identified in all of the patients. Three had homozygous mutations. A recurrent mutation, IVS10-2A>C, was found in the four unrelated families, while the mutation of c.245G>C (p.Arg82Pro) was novel.</p><p><b>CONCLUSION</b>IVS10-2A>C is likely a founder mutation for Chinese population in Wenzhou.</p>


Subject(s)
Female , Humans , Infant , Male , Amino Acid Metabolism, Inborn Errors , Diagnostic Imaging , Genetics , Amino Acid Sequence , Asian People , Genetics , Base Sequence , Brain Diseases, Metabolic , Diagnostic Imaging , Genetics , DNA Mutational Analysis , Exons , Glutaryl-CoA Dehydrogenase , Chemistry , Genetics , Metabolism , Magnetic Resonance Imaging , Molecular Sequence Data , Point Mutation , Radiography , Sequence Alignment
11.
Chinese Journal of Pediatrics ; (12): 415-419, 2014.
Article in Chinese | WPRIM | ID: wpr-345775

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the clinical, biochemical and genetic profiles of 28 Chinese patients with glutaric aciduria type 1.</p><p><b>METHOD</b>Twenty-eight patients with glutaric aciduria type 1 seen in the Department of Pediatrics, Peking University First Hospital from July 2003 to October 2013 were studied. The data of clinical course, laboratory examinations, cranial MRI and GCDH gene mutations of the patients were analyzed.</p><p><b>RESULT</b>(1) Three cases were detected by newborn screening, and the other patients were diagnosed at the age of 2 months to 17 years. (2) 22 patients (79%) were infant onset cases with psychomotor retardation, dystonia, seizures, athetosis, recurrent vomiting, drowsiness or feeding difficulty. Only two of the 22 patients with infant onset got normal intelligence and movement after treatment. Twenty of them were improved slowly with delayed development, dystonia and other neurological problems. Three patients (11%) had late onset. They had motor regression, headache and seizure at the age of 8, 9 and 17 years, respectively. Rapid improvement was observed after treatment. (3) Cranial MRI has been checked in 23 patients; 22 of them showed characteristic widening of the Sylvian fissure, abnormalities of the basal ganglia, leukoencephalopathy and brain atrophy. Thirty-five mutations in GCDH gene of the patients were identified; c.148T>C (p.W50R) was the most common mutation with the frequency of 7.7%; 6 mutations (c.628A>G, c.700C>T, c.731G>T, c.963G>C, c.1031C>T and c.1109T>C) were novel.</p><p><b>CONCLUSION</b>Glutaric aciduria type 1 usually induced neurological deterioration resulting in severe psychomotor retardation and dystonia. Most of our patients were clinically diagnosed. Patients with early onset usually remained having neurological damage. Phenotype and genotype correlation has not been found in the patients. Neonatal screening for organic acidurias should be expanded in China.</p>


Subject(s)
Humans , Infant, Newborn , Age of Onset , Amino Acid Metabolism, Inborn Errors , Diagnosis , Genetics , Metabolism , Brain Diseases, Metabolic , Diagnosis , Genetics , Metabolism , DNA Mutational Analysis , Follow-Up Studies , Gas Chromatography-Mass Spectrometry , Glutarates , Urine , Glutaryl-CoA Dehydrogenase , Genetics , Metabolism , Intellectual Disability , Pathology , Magnetic Resonance Imaging , Movement Disorders , Pathology , Mutation , Neonatal Screening , Methods , Retrospective Studies
12.
Chinese Journal of Medical Genetics ; (6): 608-611, 2014.
Article in Chinese | WPRIM | ID: wpr-291719

ABSTRACT

<p><b>OBJECTIVE</b>To review the clinical features of a families affected with glutaric acidemia type I (GA-1) and screen potential mutations in glutaryl-CoA dehydrogenase (GCDH) gene.</p><p><b>METHODS</b>Clinical data of the patients and their family members was analyzed. Genomic DNA was extracted from peripheral blood samples. The 11 exons and flanking sequences of the GCDH gene were amplified with PCR and subjected to direct DNA sequencing.</p><p><b>RESULTS</b>Two patients have manifested macrocephaly. Imaging analysis revealed arachnoid cyst and subdural effusion. The elder sister had encephalopathy crisis. The younger sister had significantly raised glutaric acid, whilst the elder sister was normal during the non-acute phase. Genetic analysis has revealed a homozygous c.1244-2A> C mutation of the GCDH gene in both patients.</p><p><b>CONCLUSION</b>The clinical features and mutation of the GCDH gene have been delineated in a Chinese family affected with GA-1. The c.1244-2A> C mutation may be particularly common in the Chinese population.</p>


Subject(s)
Adolescent , Female , Humans , Infant, Newborn , Male , Amino Acid Metabolism, Inborn Errors , Diagnostic Imaging , Genetics , Base Sequence , Brain Diseases, Metabolic , Diagnostic Imaging , Genetics , China , DNA Mutational Analysis , Family Health , Genetic Predisposition to Disease , Genetics , Glutaryl-CoA Dehydrogenase , Genetics , Homozygote , Magnetic Resonance Imaging , Mutation , Radiography
13.
Chinese Journal of Medical Genetics ; (6): 642-647, 2012.
Article in Chinese | WPRIM | ID: wpr-232241

ABSTRACT

<p><b>OBJECTIVE</b>To review clinical features of four male patients with glutaric academia type I and screen glutaryl-CoA dehydrogenase (GCDH) gene mutations.</p><p><b>METHODS</b>The 4 patients underwent brain computer tomography (CT) and magnetic resonance imaging (MRI) analyses. Blood acylcarnitine and urine organic acid were analyzed with tandem mass spectrometry and gas chromatographic mass spectrometry. Genomic DNA was extracted from peripheral blood samples. The 11 exons and flanking sequences of GCDH gene were amplified with PCR and subjected to direct DNA sequencing.</p><p><b>RESULTS</b>All patients have manifested macrocephaly, with head circumference measured 50 cm (14 months), 47 cm (9 months), 46 cm (5 months) and 51 cm (14 months), respectively. Imaging analyses also revealed dilation of Sylvian fissure and lateral ventricles, frontotemporal atrophy, subarachnoid space enlargement and cerebellar vermis abnormalities. All patients had elevated glutarylcarnitine (5.8 umol/L, 7.5 umol/L, 8.3 umol/L and 7.9 umol/L, respectively) and high urinary excretion of glutaric acid. Seven mutations were identified among the patients, among which c.146_149del4, IVS6-4_Ex7+4del8, c.508A>G (p.K170E), c.797T>C (p.M266T) and c.420del10 were first discovered.</p><p><b>CONCLUSION</b>Macrocephaly and neurological impairment are the most prominent features of glutaric academia type I. Blood tandem mass spectrometry and urine gas chromatographic mass spectrometry analysis can facilitate the diagnosis. The results can be confirmed by analysis of GCDH gene mutations.</p>


Subject(s)
Humans , Infant , Male , Amino Acid Metabolism, Inborn Errors , Diagnosis , Genetics , Metabolism , Amino Acid Sequence , Base Sequence , Brain Diseases, Metabolic , Diagnosis , Genetics , Metabolism , Glutaryl-CoA Dehydrogenase , Genetics , Metabolism , Molecular Sequence Data , Mutation , Sequence Alignment
14.
Chinese Journal of Medical Genetics ; (6): 374-378, 2011.
Article in Chinese | WPRIM | ID: wpr-326930

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the mutations of glutaryl-CoA dehydrogenase (GCDH) gene in patients with glutaric aciduria type I(GA-1).</p><p><b>METHODS</b>Genomic DNA was extracted from peripheral blood cells of the eight probands with GA-1 who were diagnosed by urine and blood analyses. By PCR and direct sequencing, all 11 exons and their flanking sequences of the GCDH gene were examined. Mutation search was also performed in some of their family members.</p><p><b>RESULTS</b>Among the eight patients diagnosed by metabolic screening, seven patients belonged to classical infantile-onset. One patient, however, was adult-onset, who was admitted to the hospital because of suffering from ischemic cerebral stroke. The GCDH gene mutations were identified in all the eight probands with GA-1: five of them had compound heterozygous mutations, while the other three harbored only one heterozygous mutation. Totally, nine different mutations of the GCDH gene were identified in the eight probands, four of them were novel, i.e., c.148T>C, c.371G>A, 909delC and c.263G>A.</p><p><b>CONCLUSION</b>GCDH gene mutations are identified in 8 patients with GA-1 in mainland China, including one adult patient with late onset. Four novel mutations of GCDH gene are found which expanded the mutational spectrum of the GCDH gene.</p>


Subject(s)
Adult , Animals , Female , Humans , Infant , Male , Amino Acid Metabolism, Inborn Errors , Genetics , Amino Acid Sequence , Base Sequence , Brain Diseases, Metabolic , Genetics , DNA Mutational Analysis , Exons , Genetics , Glutaryl-CoA Dehydrogenase , Chemistry , Genetics , Molecular Sequence Data
16.
Journal of Korean Neurosurgical Society ; : 380-383, 2005.
Article in English | WPRIM | ID: wpr-41421

ABSTRACT

Glutaric aciduria type 1 is an inborn error of lysine, hydroxylysine, and tryptophan metabolism caused by deficiency of glutaryl-coenzyme A dehydrogenase. The disease often appears in infancy with encephalopathy episode that results in acute basal ganglia and white matter degeneration. The majority of patients develop a dystonic-dyskinetic syndrome. This reports 6year-old boy who had been done previous gastrostomy due to swallowing difficulty underwent bilateral pallidotomy with intraoperative electromyography(EMG) monitoring for disabling dystonia. Intraoperative EMG was used to assess stimulation thresholds required for capsular responses and muscle tone. Surface EMG electrodes were placed on the face and cricopharyngeal muscles. Exact target were directly modified according to MRI-visualized anatomy. EMG response was consistently seen prior to visual observation of muscle activity. The surgery improved dystonic symptoms without swallowing difficulty.


Subject(s)
Humans , Male , Basal Ganglia , Deglutition , Dystonia , Electrodes , Gastrostomy , Glutaryl-CoA Dehydrogenase , Hydroxylysine , Lysine , Metabolism , Muscles , Pallidotomy , Tryptophan
18.
Journal of the Korean Pediatric Society ; : 295-301, 2003.
Article in Korean | WPRIM | ID: wpr-44746

ABSTRACT

Glutaric aciduria type 1(GA1) is an autosomal recessive disorder of the lysine, hydroxylysine and tryptophan metabolism caused by the deficiency of mitochondrial glutaryl-CoA dehydrogenase. This disease is characterized by macrocephaly at birth or shortly after birth and various neurologic symptoms. Between the first weeks and the 4-5th year of life, intercurrent illness such as viral infections, gastroenteritis, or even routine immunizations can trigger acute encephalopathy, causing injury to caudate nucleus and putamen. But intellectual functions are well preserved until late in the disease course. We report a one-month-old male infant with macrocephaly and hypotonia. In brain MRI, there was frontotemporal atrophy(widening of sylvian cistern). In metabolic investigation, there were high glutarylcarnitine level in tandem mass spectrometry and high glutarate in urine organic acid analysis, GA1 was confirmed by absent glutaryl-CoA dehydrogenase activity in fibroblast culture. He was managed with lysine free milk and carnitine and riboflavin. He developed well without a metabolic crisis. If there is macrocephaly in an infant with neuroradiologic sign of frontotemporal atrophy, GA1 should have a high priority in the differential diagnosis. Because current therapy can prevent brain degeneration in more than 90% of affected infants who are treated prospectively, recognition of this disorder before the brain has been injured is essential for treatment.


Subject(s)
Humans , Infant , Male , Atrophy , Brain , Carnitine , Caudate Nucleus , Diagnosis, Differential , Fibroblasts , Gastroenteritis , Glutaryl-CoA Dehydrogenase , Hydroxylysine , Immunization , Lysine , Megalencephaly , Magnetic Resonance Imaging , Metabolism , Milk , Muscle Hypotonia , Neurologic Manifestations , Parturition , Putamen , Riboflavin , Tandem Mass Spectrometry , Tryptophan
SELECTION OF CITATIONS
SEARCH DETAIL